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Abstract

Weather forecasts are an example of a public good that is often distributed at-scale without
charging users. This feature can make measuring the benefits of weather forecast distribution
challenging because information spillovers are likely; people like to talk about the weather and
weather information is often available from a variety of sources. Despite the ubiquity of weather
information, small-scale farmers often lack access to high-quality weather forecasts that are
tailored to help them make production decisions. We implement a randomized experiment with
400,000 cotton growers in Pakistan and vary the share of farmers treated with large clusters
(tehsils). We show that treated and untreated farmers in high-saturation clusters update their
farming behavior in line with forecasts. Directly treated farmers in high saturation tehsils are
37-67% more likely to avoid rain when irrigating and applying fertilizer and pesticides. Control
farmers in highly saturated tehsils are 22-46% more likely to avoid rain compared to controls in
low-saturation tehsils. For heat avoidance, results follow a similar pattern but are statistically
weaker. Direct information sharing is a plausible pathway - control farmers in high saturation
areas were 8% more likely than control farmers in low saturation areas to report discussing
weather information with peers. At the end of the season, estimates for yields are positive but
imprecise and there is evidence that input expenditure increased.
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1 Introduction

It can be challenging to measure the benefits of large-scale information campaigns. Low delivery

costs can justify wide distribution without spending additional resources to target participants

with specific characteristics, even when information take-up varies. Once learned, some types

of information are easy to share with neighbors, implying that spillovers are likely to attenuate

treatment effects measurement. Weather forecasts are an example of an information public good

that is often distributed widely at no cost to recipients with large public benefits (Rosenzweig and

Udry, 2019; Molina and Rudik, 2023; Shrader et al., 2023). Yet, in many low- and middle-income

countries, forecasts fail to reach small-scale farmers who would benefit from weather information

when making production and investment decisions (Linsenmeier and Shrader, 2023).

Agricultural production is inherently risky due to uninsured weather shocks that threaten the

livelihoods of small-scale farmers around the world (Lesk et al., 2016; Wollburg et al., 2024).

Weather forecasts are an important tool to help farmers learn and adapt to new weather patterns

caused by climate change. Short-range weather forecasts can help farmers plan immediate agricul-

tural activities and take preventative measures that lower the likelihood of losses due to unforeseen

weather. Although short-term weather services are widely used by farmers around the world, it is

not clear whether short-range weather forecasts provide actionable information for farmers.

We tested an optimal design strategy to detect treatment and spillover effects in a phone-

based advisory service that reaches 400,000 farmers in Pakistan. Our research design accounts for

spillovers by assigning clusters (tehsils) to have variation in treatment intensity of the share of

users per cluster assigned to any treatment. We first randomly assign tehsils to saturation levels

based on the share of phone numbers available in each tehsil. We then randomly assign phone

numbers to the control arm where they receive standard agronomic advisory messages throughout

the growing season. Or, they are assigned to treatment where in addition to adivsory messages,

they also receive localized weather forecasts. In order to measure weather beliefs and behaviors

throughout the season, we collected high-frequency phone surveys with 400 farmers per week to

learn how short-range weather forecasts affect: 1) input application timing (fertilizer, pesticides,

irrigation), 2) information sharing with peer farmers in highly treated areas, and 3) agricultural

productivity.

One feature of our setting is that the experimental frame includes all 400,000 phone numbers

in 35 tehsils. The phone number lists were provided by the government partner to the NGO
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implementer. The most granular location information available was at the tehsil level, roughly

equivalent to a county in the US. The NGO sent automated voice messages of weather forecasts with

2-day lead time that contained information about the expected rain, maximum temperature, and

minimum temperature. A more ideal set-up for information interventions would be to first identify

smaller cluster units - such as a household, neighborhood, or village to increase the probability that

participants know each other. However, with administrative data and government partners, this

type of recruitment is often infeasible and raises start-up costs.

Another feature of our setting is that there is a high potential for interference and non-

compliance. Many farmers in the control group had the option to seek weather information from

other sources - and many did - nearly 50% of control farmers reported receiving weather informa-

tion in the prior week, compared to 60% in the treatment groups.1 As anywhere in the world, it is

also common to talk about the weather. In pilot surveys, nearly 80% of farmers reported discussing

weather information with peers in the prior week. In this information environment, interference (in-

formation sharing between treatment and control) and non-compliance (control accessing weather

information and treated declining take-up) can decrease power to estimate effects and highlights

the importance of varying cluster saturation in order to identify treatment effects. The saturation

design allows us to separately identify intention to treat effects, total spillover effects, spillovers on

the treated in high saturation tehsils, and spillovers on the untreated in high saturation tehsils.

We focus on four categories of outcomes: information recall, sharing, farming behavior, and

productivity. For forecast recall, the total spillover effect exhibits a positive and significant rela-

tionship, a 10% increase in the tehsil share treated increases the probability that farmer predictions

align with forecasts by 1.02 percentage points. Results are similar for predictions of maximum and

minimum temperature - directly treated farmers have more aligned predictions and the spillover

effect is larger in magnitude. When decomposing spillovers between untreated and treated farmers,

we see that treated farmers in highly saturated tehsils are twice as likely to have rainfall predic-

tions that align with forecasts compared to treated farmers in low saturation tehsils, although the

difference is not statistically significant.

Treatment induces information sharing by treated farmers in both low and high saturation

tehsils - they are both 29-34% more likely to share information compared to control farmers.

However, compared to control farmers in low saturation tehsils, control farmers in high saturation

1Although farmers may access weather forecasts from other sources, these forecasts were less granular and had
different lead times than those provided by the program.
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tehsils were 13% more likely to receive weather information from peers, suggesting that direct

information sharing is a plausible channel that drives differences in behavior.

For farming behavior, we measured whether farmers carried out farming tasks, such as irriga-

tion, fertilizing, pesticides, and other inputs on days without rain. Avoiding rain is a potentially

important short-run adaptation because it increases resource efficiency and reduces runoff from

agricultural inputs. Directly treated farmers in high saturation tehsils are 40-68% more likely to

avoid rain when irrigating and applying fertilizer and pesticides. Control farmers in highly satu-

rated tehsils are 24-47% more likely to avoid rain compared to controls in low-saturation tehsils.

Treated farmers in low saturation tehsils are 3-14% more likely to avoid rain, but differences are

less precise. Patterns are similar for avoiding heat. Heat avoidance is less directly related to input

efficiency, but improves welfare by reducing exposure to high heat, which can have adverse health

effects. Helping agricultural workers avoid extreme heat is an important policy goal.

For agricultural productivity, we see marginally positive increase for treated in low saturation

tehsils, and positive but insignificant effects on yields in high saturation tehsils. We also see

negative but insignificant effects on profits in high saturation tehsils and mixed results on revenue.

It is possible that ambiguous profit effects are driven by the fact that treated and spillover farmers

have higher input expenditure. There is also some evidence that they harvested later and earned

lower output prices, although estimates are noisy. One explanation is that exercising flexibility in

the timing of inputs caused farmers to adjust spending in a way that was costly in the short-run.

Taken together, these findings suggest that short-run forecasts can provide meaningful information

to farmers that help them increase efficiency by applying inputs on days when it does not rain and

that information spillovers are meaningful.

More accurate forecasts increased take-up by recipients, using our preferred measures that focus

on non-zero rainfall forecasts using both farmer-reported and satellite measures. On average across

clusters, rain forecasts were accurate for 79% of days, and the worst-performing tehsils were accurate

61% of days. Among participants in the 2022 phone survey, 75% listened to at least one weather

message and 77% listened to at least one advisory message, but average listening rates were closer

to 30% indicating that there was high variation in engagement. A 10% increase in the share of

days with an accurate rainfall forecast leads to a 1.6-2.9% increase in average take-up.

Consistent with the agricultural development literature on social learning and spillovers, prior

studies among small-scale farmers suggest that information sharing is pervasive (Foster and Rosen-

zweig, 1995; Munshi, 2004; Bandiera and Rasul, 2006). In the context of learning from forecasts,
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previous studies showed that participants learn to interpret forecasts with relatively little training

(Barnett-Howell, 2021; Ahmad et al., 2022; Cole et al., 2023). We contribute to a growing liter-

ature that evaluates the efficacy and cost effectiveness of delivering weather forecasts to farmers

(Fafchamps and Minten, 2012;Fosu et al., 2018; Camacho and Conover, 2019; Yegbemey et al.,

2023). Recently, Burlig et al. (2024) show that Indian farmers with access to better monsoon

onset forecasts increased agricultural investment. Rosenzweig and Udry (2019) establish that accu-

rate forecasts are particularly valuable and that Indian farmers learn accuracy overtime and make

productive investment decisions accordingly. Digital agriculture services can increase adoption of

improved management practices and are highly cost effective Fabregas et al., 2019; Ferdinand et al.,

2021; Fabregas et al., 2024). We contribute to this literature by studying the delivery of short-

run weather forecast information to farmers in at-scale experiment with a saturation design that

permits identifying spillovers.

We build on prior work on saturation cluster designs and measurement under interference

(Hudgens and Halloran, 2008; Baird et al., 2018 Vazquez-Bare, 2023). In applied settings, we

contribute to the literature on information experiments at-scale that consider spillovers in a variety

of settings including tax compliance (Cruces et al., 2024, political advertisements (Gerber et al.,

2011; Enŕıquez et al., 2024, labor (Duflo and Saez, 2003; Crépon et al., 2013). Viviano and

Rudder (2024) provide theoretical grounding for a saturation design with relatively few clusters,

with the objective of identifying optimal saturation by detecting when spillovers level off. The

method is to first assign clusters randomly to saturation levels (the standard procedure) and then

randomly adjust the saturation level by a small perturbation (e.g., 5 or 10 %), preserving the

average assignment in cluster groups while gaining the ability to estimate the marginal treatment

effect of increasing or decreasing the treatment share across clusters, without decreasing power to

detect main effects. Despite the improvement in welfare as the share treated increases, we use novel

methods to show that spillovers level off after when between 50-70% of farmers are treated in a

cluster. This means that policymakers under a budget constraint would have a higher impact by

reaching more clusters without treating all individuals within the cluster rather than attempt to

reach 100% of individuals within fewer clusters.
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2 Background and Setting

Cotton is a politically important, high-value cash crop that contributes to Pakistan’s domestic

textile manufacturing. All of cotton production is sold through local intermediaries into Pakistan’s

$17 billion textile industry which accounts for 60% of export values.2 Cotton growing is concen-

trated in the Indus River valley in Punjab and Sindh provinces. The majority of production (66%)

is in Punjab province, concentrated in 11 out of 23 districts (USDA, 2023).3 Cotton production

is input intensive and grown under irrigation. Farmers use both government-supported irrigation

canals and privately-operated tubewell systems. High quality weather forecasts enable farmers

to plan important farming tasks - planting, irrigation dates, fertilizer, pesticides, herbicides, and

fungicides.

In Punjab province, 1.6 million farmers grow cotton and the majority have farms that are

less than 5 acres.4 Because it is difficult to reach large numbers of farmers through traditional

in-person agricultural extension, our NGO collaborator Precision Development (PxD) launched an

agronomic advisory service for cotton growers in 2021. The program included a roster of 400,000

farmer phone-numbers located in 40 cotton-growing tehsils in Punjab Province, representing nearly

one-third of all cotton growers in the province.5 The roster of farmer phone numbers came from the

Punjab Department of Agriculture and consisted of cotton farmers who signed up for government

agricultural services. For the 2022 cotton growing season, the NGO expanded operations by adding

a weather forecasting service. Both agronomic advisory and weather forecasts were delivered to

farmers via automated voice calls. The phone number that appeared on calls was known by farmers

to indicate message delivery from the Punjab Department of Agriculture. Farmers could opt out

of messages by blocking the phone number or unsubscribing, although in practice this was not

common.

2.1 Weather Forecasts and Information Sharing

General weather information is available to farmers with access to internet and media. Weather

information is shared by radio, television, through smartphone apps and through the Pakistan

Meterological Department. However, prior to the roll-out of weather forecasts phone calls, there

was no systematic delivery of short-range weather forecasts by the government directly to farmers.

2Source: World Bank’s World Integrated Trade Solution database. https://wits.worldbank.org/
3USDA Foreign Agriculture Service. https://ipad.fas.usda.gov/highlights/2023/08/Pakistan/index.pdf
4Agricultural Census by the Pakistan Bureau of Statistics.
5Tehsils are the second smallest administrative unit in Pakistan, equivalent to a county in the United States.
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Pilot work with farmers indicated that there was a high-demand for short-range weather information

and that farmers share weather information with each other. During pilot surveys before the full

project launch, about half of farmers reported having access to weather information and 87% of

farmers said they share it with other people in their village. Acting on information from peers

and government sources is also relatively common. Among farmers who reported adopting any new

practice in the prior year (25% of the sample), 30% reported learning general agronomic information

from peers, compared to 47% learning from government extension officers, and 26% learning from

agrodealers. Even without direct communication, farmers also learn from each other by observing

behavior on neighboring plots, although we do not directly measure this behavior in our setting.

3 Research Design

We set up a cluster randomized experiment where we first allocate tehsils to a saturation group and

then assign individual farmer phone numbers to treatment. Out of 40 eligible tehsils, the research

team worked with a sub-sample of 35 tehsils because the NGO set-aside the remaining tehsils for

a separate pilot project. The sample frame consists of nearly 400,000 existing users of a digital

cotton farming advisory service. The eligible sample was allocated to treatment and control using

a saturation design that varied the share of farmers per tehsil that were allocated to treatment.

The control group received calls for standard cotton agronomic advisory. The treatment group

received advisory calls plus 2-day weather forecast throughout the cotton growing season. We treat

the tehsil as the cluster.6

Viviano and Rudder (2024) provide an approach to measure spillovers by varying treatment

probability in the presence of unknown interference between units within clusters (e.g. farmers

within tehsils). In many experiments, treatment is assigned by allocating a predetermined share of

units within clusters and assuming that spillovers between treated and control units are minimal

(SUTVA, or stable unit treatment value assumption). When researchers suspect that treatment

effects may spillover to other units, they may randomly vary the share of units assigned within

clusters to learn about the presence of information sharing via social learning (Miguel and Kremer,

2004; Hudgens and Halloran, 2008; Baird et al., 2018). We first randomly assigned pairs of clusters

to a high, medium, and low probability of treatment. The high and medium staturation induce

6We use tehsils for clusters because tehsils were the narrowest reliable administrative unit reported in the govern-
ment rosters. We also view tehsils as a reasonable unit to measure spillovers because they are small enough that at
least some farms will likely know each other and interact but they are not too small such that information spillovers
are too high, which would lead to high intra-cluster correlation and decrease power.
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perturbation by 10% (positive and negative respectively) around 50% and 70% of individuals treated

in two consecutive experimentation wave. Within each of these groups we also perturbated the

assignment within pairs slightly (by 5%) to identify the improvement from a small change in the

assignment probability. Viviano and Rudder provides econometric theory and proofs to show that

this method is well-powered even when there are relatively few clusters, as in this setting with

35 tehsils. The assumption is that there are minimal differences based on observables and that

information does not spread too fast between treated and untreated units. We verify balance on

observables using administrative data shown by the table 1 in the appendix. Our set-up is a good

setting for this assumption because we narrowly focus on cotton-growers, who have relatively similar

land size, land quality, and access to irrigation.

By varying treatment intensity across a relatively large geography with many participants, our

design will allow us to detect generalized social learning from an at-scale experiment of digital

information delivery. We also leverage detailed information on phone call listening rates to weigh

benefits of targeted delivery compared to mass delivery.

3.1 Assignment flow chart

There are two levels of random assignment: cluster and individual. Figure 1 shows the random-

ization diagram. In the first wave assignment, we varied treatment intensity at the tehsil level.

In the second wave, we increased treatment intensity in all tehsils and increased the percentage

of users assigned to treatment based on their uptake. For adaptive assignment, we vary the share

of farmers assigned based on their historic uptake of the service. Users with higher uptake were

10 percentage points more likely to be assigned to treatment. We do not report results from the

adaptive assignment in the main results. First, the second wave assignment took place later in the

season than originally planned, therefore, those additionally treated phone numbers had less time

with the service. Second, the likelihood of being assigned to treatment was only slightly higher for

those with above median listening rates, and we were underpowered to detect effects. For our col-

laborator, it was important to provide weather forecasts to more people, but those rates were scaled

within each grouping of low-medium-high saturation rates. We therefore focus on the continuous

version of the saturation rate and the split between low-high saturation rates, as explained in the

empirical estimation section. Saturation rates (and therefore propensity scores of assignment) vary

over time from wave 1 to wave 2, but the low-medium-high split was randomized at the beginning

of the season.
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3.2 Data and Sample

We leverage three data sources in our analysis: administrative data the records whether participants

listen to phone-calls, a phone survey throughout the 2022 cotton-growing season, and an endline

survey with a subset of participants 8 months after the end of the project in July 2023.

3.2.1 Administrative data

Administrative data provided by the NGO provide information on all 460,000 phone numbers

provided by the government roster. It includes records for dates when messages were delivered, the

length of the phone message, and the length of the phone message listened to by the participant

for both weather forecasts and agronomic advisory. Administrative data are available for both the

pre-treatment season which took place from May to October, 2021, and during the project season

which took place from May to October, 2022.

3.2.2 2022 Mid-season phone survey

During the 2022 agricultural season, we implemented a phone survey with a sample of farmers drawn

from the administrative data records. The primary goal of the survey was to collect real-time data

on weather responses from different farmers throughout the season. The primary outcomes collected

during the phone survey was to elicit weather predictions for the next day, recall information for

weather in the prior day, the exact days of recent farming activities (irrigation, fertilizer, pesticide

applications), information about sharing weather, and expectations for yields during harvest. The

survey firm had a capacity to call up to 400 farmers per week to complete a survey. We decided to

draw a repeat cross section of new farmers each week instead of a repeat panel of the same farmers

because we wanted to maximize geographic coverage and minimize survey bias effects that could

arise from repeat surveys to the same set of farmers. At the end of the season, we have surveys

for 5,700 farmers, of which 3,600 were cotton-growers. For most analysis we use the full sample of

farmers, but we only asked details on agricultural inputs for cotton-growers.

For weekly phone surveys, We drew random lists of farmer phone numbers to be approximately

50% treatment and 50% control in order to optimize power. We also stratified call lists based on

tehsil locations to ensure that approximately equal numbers of users were called from each tehsil

for each weekly survey. Over the course of the season, the survey company attempted to call 17,600

users, of which 6,500 completed a survey (5,700 for our sample), resulting in a survey completion
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rate of 37%. Although this is low, it is in line with phone survey response rates in some other low-

and middle-income settings (Gibson et al., 2019, Henderson et al., 2020; Gourlay et al., 2021). In

Appendix 3, we show how the survey population differs from the full roster of phone numbers.

3.2.3 2023 Endline phone survey

Approximately eight months after the mid-season phone survey, we collected another phone survey

with 2,000 respondents. These respondents were a randomly drawn subsample from the original

phone survey, balanced on treatment status and location. We asked a series of follow-up questions

related to cotton productivity, including yields, profits, costs, and timing of harvest. We also asked

farmers about their planting behavior in the subsequent season.

3.3 Main Outcomes

We pre-registered the following outcomes: engagement with weather and advisory phone calls,

weather forecast predictions, sharing of information, timing of input applications, yields, and input

use and profits. In addition, we pre-registered short and long-run expectations and beliefs as

secondary outcomes and pre-specified forecast accuracy and weather trends (shocks and extreme

weather events) as a source of heterogeneity. Before the second survey, we registered short-run

adaptation (crop, seed choices, conservation agriculture practices) and perceptions of climate change

as additional outcomes.

Forecast predictions and recall: Messages of forecasts sent to mobile phones included

an estimate of the expected amount of rain in millimeters, the maximum temperature, and the

minimum temperature in celsius. Forecasts did not include probabilistic information. Instead

the forecast provider worked with the NGO to establish thresholds that would define whether

forecasts would positively report rain levels. During the mid-season phone survey, farmers their

predictions for weather for the day following the survey. For rainfall, farmers were asked ”Do

you think it will rain tomorrow?” For temperature, farmers were asked, ”What do you think the

max(min) temperature will be tomorrow?” We then compared farmers’ predictions with the forecast

information provided on those days. For rainfall, we define a binary variable equal to one if the

farmer’s rain prediction aligns with the forecast (e.g. if a farmer predicts any rain level above zero

and the forecast also reports any rain level above zero, they are assigned one; zero otherwise).

For temperature, we calculated the absolute deviation of predicted temperature minus the forecast

temperature so that predictions above and below the forecast are treated similarly. Negative values
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in the temperature prediction indicate that the farmer’s prediction was closer to the forecast.

Sharing information: The first variable in this outcome grouping is a binary variable equal

to one if farmers reported learning weather information from any official source over the prior week.

Second, farmers were asked if they shared weather information with any peers. Finally, farmers

were asked if any peers shared weather information with them.

Farming behavior: During each mid-season phone survey, farmers were asked if they carried

out specific farming tasks and the precise date of those tasks. The primary tasks are planting,

irrigation, fertilizing, adding pesticides, herbicides, and fungicides. Not all farmers completed all

tasks during a given week, so sample sizes vary based on whether a task was reported during the

phone survey. We then compared the dates of tasks with both the realized and forecast weather

for the same day. For the main results, we report results for realized weather, and report results

for forecasts in the appendix.

3.4 Balance

We report two balance tables: individual balance of the phone survey sample, cluster balance of

phone survey participants. Table 1 reports means, standard deviations and differences in means

tests for baseline covariates for the sample of farmers drawn into the mid-season phone survey. Ta-

ble 2 reports covariate balance based on whether phone survey farmers were allocated to either low

or high saturation tehsils. We see a difference in household size, where high saturation households

are slightly smaller, but are otherwise similar based on other characteristics (education, age, gen-

der, education, prior season yields, farm size) and participation (similar listening rate to advisory

services in the prior year). We also see that there are differences based on measures of minimum

temperature stress. This is likely driven by a few outliers because temperature stress based on

minimum temperature (defined as below 15 degrees Celsius, the lower bound for cotton) was not

common. Tehsil saturation is balanced on forecast accuracy for rain and maximum temperature,

which is used for heterogeneity analysis.

In addition, Table 3 reports sample differences for the group of phone numbers drawn into the

phone survey sample compared to the full sample of phone numbers provided by the government.

Phone survey participants are largely similar to the administrative population, except that they

are more likely to listen to advisory service messages.
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4 Estimation

4.1 Intention to Treat and Total Spillover

To estimate intention to treat and total spillover effects, we use the following specification:

Yic “ α ` β1Treatic ` β2Saturationc ` ϵic (1)

Yic denotes the outcome for farmer i in cluster c. Standard errors are clustered at the tehsil-

level. Recall that we had a two stage randomization procedure where clusters were first randomly

assigned to a saturation level and then individuals within each cluster were randomly assigned to a

treatment status. β1 is the intent-to-treat effect for individuals assigned to treatment. β2 captures

the total spillover effect, and is composed of spillovers for treated and untreated units. In other

words, it includes both the additional effect of being treated along with many treated peers, and

the spillover effect of untreated units that have many treated peers (Hudgens and Halloran 2008;

Baird et al., 2018). In this specification, in wave 1 treatment saturation is specified as a continuous

variable that ranges from probabilities pL “ t0.05, 0.10, 0.15u for low saturation, pM “ t0.35, 0.45u

for medium saturation, and pH “ t0.55, 0.65u for high saturation. In the second wave, treatment

saturation was assigned as pL “ t0.10, 0.15, 0.20u for low saturation, pM “ t0.55, 0.65u for medium

saturation, and pH “ t0.75, 0.85u for high saturation.7

4.2 Spillover Effects on Treated and Untreated Units

To disentangle the spillover effects on treated and untreated units, we use the following saturated

regression:

Yic “ α ` β1Treat ˆ LowSaturationic ` β2Control ˆ HighSaturationc

` β3Treat ˆ HighSaturationc ` ϵic

(2)

For ease of interpretation, we combine the medium and high saturation groups into one group

(called High) to compare against the Low Saturation group. The reference category is control units

7The two wave assignment strategy generates differences in treatment duration for individuals in the sample.
In our main analysis, we do differentiate between the two assignment waves. In practice, wave 2 was implemented
relatively late in the season. Results are similar when dropping those who received treatment later in the season.
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in the low saturation clusters (we have no pure control clusters). β1 identifies the effect on treated

units in low saturation clusters, β2 identifies the spillover effect on untreated control units located

in high saturation clusters, and β3 identifies the treatment effect of directly treated units in high

saturation clusters. The difference between β1 and β3 represents the spillover on treated units.

5 Results

5.1 Weather Predictions

Columns 1, 3, and 5 in Table 4 reports treatment effects regressions following specifications in

equations 1 and columns 2, 4, and 6 report results using equation 2. There are three measures

based on whether the farmer prediction aligns with forecasts - rainfall, maximum temperature, and

minimum temperature, as described in Section 3.3. Forecast recipients who are directly treated

have rainfall predictions that are 3.4 percentage points more likely to be aligned with forecasts. The

total spillover effect exhibits a positive and significant relationship, a 1% increase in the tehsil share

treated increases the probability that farmer predictions align with forecasts by 10.2 percentage

points. Results are similar for predictions of maximum and minimum temperature - directly treated

units have more aligned predictions and the spillover effect is larger in magnitude. Results from

the saturated regressions in columns 2, 4, and 6 suggest that the spillover on treated units has the

largest effect, compared to the treated units in low saturation clusters and control units in high

saturation clusters.

Non-response for some weather forecast variables was high for maximum and minimum temper-

ature. Only about one quarter of phone survey participants supplied a response in degrees Celsius

that could be converted into a measure of absolute deviation. We think this is because without

access to a granular forecasts, people have fewer tools to predict temperature with precision. For

rainfall, the question was simpler to answer. Participants were asked a yes or no question, ”do you

think it will rain tomorrow?” which many more respondents were willing to answer. Table 10 re-

ports results on the likelihood of answering these questions. We see that treated farmers were more

likely to provide answers to these questions (columns 1 and 5). As an alternative specification, we

impute group-level means and re-run regressions with the full sample (columns 3 and 7) to increase

precision in estimates from the underrepresented control group and see that results are similar.

While the differential non-response is a concern, we highlight these results to show evidence that

treated farmers attended to the information and updated their beliefs.
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5.2 Receiving and Sharing Weather Information

Table 5 reports outcomes related to receiving and sharing weather information. In this setting, it

is possible that control respondents have access to weather information from other sources besides

the forecasts provided by the collaborator. Column 1 reports the probability that a respond reports

learning a weather forecast from an official source in the previous week. About 51% of the control

group received forecasts, and treated respondents were 12 percentage points more likely to report

receiving forecasts. The most common other sources were internet/smartphone, TV, and radio.

The intervention induced treated farmers to share weather information with their peers (columns

3 and 4). About 40% of control farmer share weather information and treated farmers 10-13

percentage points more likely to share - a 25% increase. Spillover effects in column 6 are particularly

relevant - control farmers in high saturation tehsils were 14% more likely to report receiving weather

information from peers, despite not having learned information from official sources (column 2).

This validates information sharing as a plausible channel for the spillover effects observed in farming

behavior described in the subsequent section.

5.3 Short-run Farming Behavior

We focus on two types of farming responses: 1. avoiding rain, and 2. avoiding heat for a series

of farming tasks - planting, irrigation, fertilizing, applying pesticides, fungicides, and herbicides,

and an index of all 6 tasks. Panel A of Table 7 reports intent-to-treat and total spillovers and

Panel B reports spillovers as a saturated regression for avoiding rain using realized weather. Table

7 is organized similarly for avoiding heat using realized weather. In the appendix, Tables 11 and

12 report results using forecasts to establish avoidance behavior and results are similar. Table 6

shows that treated farmers are more likely to avoid rain when irrigating, fertilizing, and applying

pesticides, and that there are large spillovers, particularly for irrigation and fertilizing for both

control and treated units in high saturation tehsils (columns 2 and 3). Focusing on Panel B,

twenty-two percent of control farmers in low saturation tehsils use irrigation on days without rain,

treated farmers in low-saturation tehsils are 14% more likely to irrigate on days without rain, and

control and treated units in high saturation tehsils are respectively 47% and 68% more likely irrigate

on days without rain (point estimates in percentage points are .032, .104, and .151, respectively).

Most farmers in this sample use a combination of public and private sources of irrigation, so that

this type of reallocation is feasible without renegotiating irrigation time with neighbors on a shared
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system.

For fertilizing, control farmers in high saturation areas are 30% more likely, and treated respon-

dents in high saturation are 40% more likely to avoid rain.8 Recall that in Table 2, we show that

tehsils in low and high saturation are balanced in terms of seasonal rainfall patterns and rainfall

accuracy, which reduces concerns that highly saturated tehsils systematically differed in terms of

rainfall patterns. We see similar patterns for pesticide applications and for the index in column 7.

Fungicide and herbicide exhibit noisier and less clear overall patterns, but fewer farmers applied

these inputs overall. It appears that treated farmers were less likely to avoid rain when planting,

but this was early in the season after farmers only had been receiving forecasts for a few weeks. If

farmers planted before treated began, they are excluded, which is why the sample size for planting

is lower than for irrigation or fertilizing.

Table 7 reports analogous results for avoiding heat, defined as days with maximum temperature

above 37C. Results are statistically weaker, but exhibit similar patterns across all tasks: treated

farmers in low and high saturation tehsils as well as control units in high saturation tehsils all avoid

heat to a greater extent than control units in low saturation tehsils. One major difference is that

control units in low saturation tehsils are ‘better’ at avoiding heat compared to avoiding rain: the

share of control farmers that avoid heat ranges from 81-91% for most tasks, compared to 20-30%

for avoiding rain. Nonetheless, treated farmers in high saturation areas are 9% more likely to avoid

heat when irrigating, 8% more likely during fertilizing, and 12% more likely to avoid heat when

applying fungicides.

5.4 Productivity Outcomes

Panel A of Table 8 reports spillover effects for productivity outcomes, including yield, profits,

revenue, input costs, output prices, and harvest timing. Column 1 shows that yields for treated

farmers are 5% higher for all treated farmers and 3-7% larger in saturated regressions. Results are

only marginally significant for the treated farmers in low saturation tehsils (Panel B, column 1).

In both panels, most measures are too noisy to reject differences from zero, but patterns suggest

that profit decreases as saturation rates increase and revenue slightly increases for treated farmers,

but not spillover farmers. In both Panel A and B, input costs rise as saturation rates increase, and

is statistically larger for treated farmers in high saturation tehsils whose expenditure increased by

8Some types of common fertilizer are water soluble and benefit from some rain to dissolve. We lack precise
information about the types of fertilizers used to inspect this in detail but argue that farmers would still prefer to
apply fertilizers on days without rain and use irrigation to dissolve fertilizers as needed.
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12%.

Columns 5 and 6 report the output prices for cotton and the harvest timing. Although measured

with noise, we see that prices are 1.6-3.8% lower in higher saturation tehsils, suggesting that one

reason why profits are lower is that farmers received lower farmgate prices when selling cotton.

Treated farmers in low saturation tehsils harvest their crop later by a few weeks - control farmers

harvest in late September and treated farmers in low saturation tehsils harvest in early October.

These patterns suggest that there may high saturation may lead to some crowding out at the time

of harvest. Harvest is labor-intensive and 90% of farmers hire labor during the period. Treated

farmers in low saturation tehsils may have had an information advantage to delay harvests which

afforded slightly better prices and overall better profits.

In Panel B, input costs rose by 9-13%, which was statistically different than zero. Columns

5 and 6 show suggestive evidence that treated farmers harvested later and received lower prices,

which is a possible mechanism to explain lower overall profits. Panel B reports input costs per

acre and shows that costs increased by 9-16% for irrigation, pesticides, and fertilizer. Given that

farmers responded to treatment by adjusting the timing of their input applications, it suggests that

some of these adjustments were costly in the short-run.

5.5 Forecast Accuracy and Take-up

Among participants in the 2022 phone survey, 75% listened to at least one weather message and 77%

listened to at least one advisory message. On average, people who listened to at least one weather

message listened to 30% of all messages sent, highlighting that people selectively answered messages

throughout the season. Table 9 reports differences in message take-up rates by different measures of

forecast accuracy. First, satellite rainfall accuracy (row 1) refers to the share of days where rainfall

forecasts aligned with realized rainfall according to satellite measures. Farmer-reported rainfall

accuracy (2) is the share of days when whether forecasts aligned with farmer-reported rainfall

during the survey. Absolute rainfall deviations (3) is the average absolute deviation of forecasts

from realized weather, measured in millimeters. Rainfall false alarms (4) is the number of days with

false alarms in precipitation, defined as days where forecasts predicted no rain and a heavy rain

fell, or when forecasts predicted heavy rain and no rain fell. Rainfall RMSE (5), max temp (6), and

min temp (7) are the root mean-squared error for rainfall, max and min temp from a tehsil-level

regression of the realized value on the forecast value. Measures 3-7 are common measures used in

meteorology to assess forecast accuracy.
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Measures 1 and 2 were constructed as binary measures that can be interpreted as the share of

days where a forecast of positive rain corresponded to realized rain, and vice versa for forecasts

and realized weather without rain. Measure 1 uses satellite measures of realized rain compared

to forecasts. Measure 2 uses farmer-reported rainfall. During the phone survey, respondents were

asked if it rained the prior day and we matched that up with forecast on the same day. Measure

2 is the ’ground truth’ data that best captures whether forecasts were accurate for participants.

According to both measures, increased accuracy is correlated with higher average take-up, sug-

gesting that farmers in areas with lower accuracy decreased their take-up as a response. A 10%

increase in the share of days with an accurate forecast leads to a 1.6-2.9% increase in average take-

up. A few of the other satellite-based measures of accuracy show the opposite trend; an increase

in rainfall deviations between forecast and realized weather (row 3) and an increase in max temp

RMSE (row 6) are related to a an increase in take-up (by construction, higher values of measures

3-7 imply lower accuracy). However, these results are not necessarily inconsistent, measures 1 and

2 are binary measures while 3 and 6 are continuous. It is possible that higher rainfall deviations

correspond to days with rain, and the binary measure of ’yes’ or ’no’ rain are what matters. For

temperature, overall RMSE was low across tehsils and in general temperature forecasts tend have

higher accuracy because they are more spatially correlated compared to rainfall.

6 Conclusion

After implementing a saturation design at large-scale with 400,000 farmers in 35 tehsils, we show

that information spillovers are common and influence farmer decision making. We separately

identify intent-to-treat effects, total spillovers, as well as spillovers on treated and untreated farmers.

We show a pattern of behavior change that indicates that spillovers occur for both treated and

control farmers, indicating that treated farmers benefit from from having other treated farmers to

discuss farming and that control farmers benefit indirectly through information sharing.

17



References

Ahmad, H. F., Gibson, M., Nadeem, F., Nasim, S., and Rezaee, A. (2022). Forecasts: Consumption,

production, and behavioral responses.
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7 Tables and Figures

Figure 1: Saturation Design
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Experimental Balance

Table 1: Experimental Balance by Individual Treatment Status

(1) (2) T-test
Control Treatment Difference

Variable Mean/SD Mean/SD Control-Treat

Woman 0.042
(0.201)

0.031
(0.186)

0.011***

Age 42.100
(16.420)

41.914
(14.841)

0.186

Education 5.970
(7.086)

5.876
(8.189)

0.094

Household size 5.464
(4.022)

5.413
(3.284)

0.051

Owns land 0.868
(0.654)

0.877
(0.613)

-0.010

Farm size (acres) 5.578
(5.925)

5.522
(6.454)

0.055

Uses smartphone (self-reported) 0.342
(0.616)

0.354
(0.434)

-0.012

Uses WhatsApp (automated) 0.322
(0.464)

0.331
(0.619)

-0.009

Prior season yields (mounds/acre) 25.938
(13.403)

25.666
(15.319)

0.272

Prior season advisory listening rate on all calls 0.566
(0.675)

0.580
(0.725)

-0.015

Prior season advisory listen at least once 0.936
(0.286)

0.942
(0.291)

-0.006

Completed Farming Task Module 0.611
(1.023)

0.604
(1.085)

0.007

N 2547 3187
Clusters 35 35
F-test of joint significance (F-stat) 3.479***
F-test, number of observations 5734
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Table 2: Experimental Balance by Cluster Saturation

(1) (2) T-test
Low Saturation High Saturation Difference

Variable Mean/SD Mean/SD Low-High

Woman 0.036
(0.253)

0.036
(0.208)

-0.000

Age 41.512
(16.997)

42.046
(15.271)

-0.534

Education 5.735
(8.530)

5.949
(9.692)

-0.214

Household size 6.136
(6.791)

5.294
(3.966)

0.842***

Owns land 0.883
(0.474)

0.871
(0.797)

0.012

Farm size (acres) 5.207
(9.518)

5.611
(7.915)

-0.404

Uses smartphone (self-reported) 0.335
(0.318)

0.350
(0.512)

-0.016

Uses WhatsApp (automated) 0.312
(0.509)

0.329
(0.588)

-0.017

Prior season yields (mounds/acre) 25.683
(15.714)

25.803
(16.484)

-0.120

Prior season advisory listening rate on all calls 0.558
(0.688)

0.576
(0.841)

-0.018

Prior season advisory listen at least once 0.942
(0.270)

0.939
(0.330)

0.003

Completed Farming Task Module 0.587
(1.427)

0.609
(1.313)

-0.022

Days with max temp stress 67.421
(423.113)

49.711
(548.746)

17.710

Days with min temp stress 0.148
(6.337)

16.357
(426.056)

-16.209**

Days with max temp extreme 7.710
(139.385)

5.793
(137.749)

1.917

Days with min temp extreme 0.000
(0.000)

4.430
(205.925)

-4.430

Cumulative Rainfall 686.679
(682.429)

691.990
(1151.743)

-5.311

Days with extreme rain 18.938
(27.176)

18.701
(41.437)

0.237

Days with any rain 110.879
(130.830)

108.540
(219.532)

2.339

Days with heavy rain 28.896
(49.395)

27.355
(54.634)

1.541

Days with no rain 72.121
(130.830)

74.460
(219.532)

-2.339

Forecast accuracy - rain 8.528
(10.688)

9.118
(19.156)

-0.590

Forecast accuracy - max temp 1.742
(5.314)

1.870
(3.421)

-0.128

Forecast accuracy - min temp 1.130
(2.355)

1.447
(5.665)

-0.317***

N 1608 4126
Clusters 10 25
F-test of joint significance (F-stat) 0.696
F-test, number of observations 5734
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Table 3: Difference in Means for Administrative Data and Phone Survey Sample

Administrative Data Completed Phone Survey

Mean (sd) Mean (sd) Test

Woman 0.043 (0.204) 0.034 (0.182) 0.015
Age 51.132 (14.455) 50.918 (13.644) 0.419
Education 5.457 (4.309) 5.949 (4.237) ă0.001
Household size 5.404 (3.303) 5.506 (3.177) 0.092
Owns land 0.852 (0.355) 0.872 (0.334) 0.002
Farm size (acres) 5.193 (4.480) 5.508 (4.718) ă0.001
Uses WhatsApp (automated) 0.267 (0.443) 0.323 (0.467) ă0.001
Prior season advisory listening rate on all calls 0.426 (0.346) 0.575 (0.317) ă0.001
Prior season advisory listen at least once 0.786 (0.410) 0.939 (0.239) ă0.001
Weather listening rate 0.125 (0.223) 0.185 (0.262) ă0.001
Pick up weather at least once 0.438 (0.496) 0.512 (0.500) ă0.001
Advisory listening rate 0.208 (0.253) 0.327 (0.274) ă0.001
Pick up advisory at least once 0.774 (0.418) 0.958 (0.200) ă0.001
Treat 0.611 (0.488) 0.556 (0.497) ă0.001

N 442,783 (98.7%) 5,734 (1.3%)
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Main Results Tables

Table 4: ITT and Spillover Effects of Weather Predictions

Rainfall Max Temperature Min Temperature

(1) (2) (3) (4) (5) (6)
Prediction
equals

forecast
(0/1)

Prediction
equals

forecast
(0/1)

Absolute
Deviation

from
Forecast

Absolute
Deviation

from
Forecast

Absolute
Deviation

from
Forecast

Absolute
Deviation

from
Forecast

Treat 0.034*** -0.676*** -1.074***
(0.012) (0.172) (0.232)

Tehsil Share Treated 0.102*** -1.026** -1.033**
(0.035) (0.426) (0.412)

TreatˆLow Saturation 0.023 -0.486 -1.499***
(0.023) (0.475) (0.493)

ControlˆHigh Saturation 0.008 -0.224 -0.698*
(0.027) (0.489) (0.381)

TreatˆHigh Saturation 0.051* -1.003** -1.720***
(0.025) (0.471) (0.310)

Pvalue: Treat(Low)=Control(High) 0.5188 0.3728 0.0839
Pvalue: Treat(Low)=Treat(High) 0.2682 0.0850 0.6005
Pvalue: Control(High)=Treat(High) 0.0086 0.0002 0.0004
Control Mean 0.438 0.432 4.056 4.227 4.915 5.446
Observations 5144 5144 1283 1283 1189 1189
Adj R-Squared 0.004 0.001 0.019 0.015 0.026 0.024

Robust standard errors in parenthesis clustered at the tehsil level. * p ă 0.10, ** p ă 0.05, *** p ă 0.01. Table
reports ITT and spillover treatment effects regressions for whether a respondent’s predicted forecast for rainfall,
maximum temperature, and minimum temperature for the following day align with the forecasts provided by phone
messages. Sample sizes differ due to non-response. Results are similar if group means are imputed as reported in
Table 10 in the appendix.
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Table 5: ITT and Spillover Effects of Receiving and Sharing Weather Information

(1) (2) (3) (4) (5) (6)

Received
Weather
Info from

Official Sources

Received
Weather
Info from

Official Sources

Shared
Weather

Info
w/ Peers

Shared
Weather

Info
w/ Peers

Peers
Shared
Weather

Info

Peers
Shared
Weather

Info

Treat 0.119*** 0.105*** 0.029*
(0.014) (0.012) (0.015)

Tehsil Share Treated -0.035 -0.006 -0.015
(0.044) (0.041) (0.033)

TreatˆLow Saturation 0.108*** 0.131*** 0.113***
(0.034) (0.028) (0.025)

ControlˆHigh Saturation -0.010 0.015 0.048**
(0.028) (0.025) (0.019)

TreatˆHigh Saturation 0.109*** 0.113*** 0.056***
(0.028) (0.026) (0.017)

Pval: T(Low)=C(High) 0.0034 0.0004 0.0111
Pval: T(Low)=T(High) 0.9710 0.5405 0.0082
Pval: C(High)=T(High) 0.0000 0.0000 0.5738
Control Mean 0.509 0.516 0.399 0.387 0.395 0.358
Observations 5733 5733 5732 5732 5723 5723
Adj R-Squared 0.014 0.013 0.011 0.011 0.001 0.002

Robust standard errors in parenthesis clustered at the tehsil level. * p ă 0.10, ** p ă 0.05, *** p ă 0.01. Table
reports ITT and spillover treatment effects regressions for whether a respondent received weather information
from an official source such as government, TV, Radio, Mobile phone (Columns 1 and 2), whether they shared
weather information with peers (Columns 3 and 4), and whether peers shared weather information with the
respondent over the prior week (Columns 5 and 6). Columns 1, 3, and 5 report ITT treatment effects and
total spillover effects as a continuous measure equal to the share of units treated in each tehsil. Columns 2, 4,
and 6 report saturated regression where the reference category is control units in low saturation clusters. All
outcomes are binary.
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Table 6: ITT and Spillover Effects on Farming Behavior: Avoiding Rain

Panel A: ITT and Spillover Effects as Continuous Measure

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Rain

Index

Treat -0.036* 0.038** 0.010 0.029* 0.005 -0.011 0.003
(0.020) (0.015) (0.015) (0.016) (0.027) (0.021) (0.017)

Tehsil Share Treated -0.062 0.247*** 0.127* 0.126* -0.047 0.015 0.051
(0.108) (0.081) (0.064) (0.067) (0.078) (0.083) (0.075)

Control Mean 0.552 0.256 0.190 0.235 0.259 0.264 0.000
Observations 2257 3303 3223 3046 1167 2071 3482
Adj R-Squared 0.001 0.019 0.005 0.006 -0.001 -0.001 0.000

Panel B: Spillover Effects as Saturated Regression

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Rain

Index

TreatˆLow Saturation -0.015 0.032* 0.005 0.022 0.026 -0.024 0.005
(0.020) (0.017) (0.018) (0.021) (0.036) (0.023) (0.017)

ControlˆHigh Saturation 0.067 0.104*** 0.053** 0.051 -0.023 -0.011 0.045
(0.064) (0.034) (0.023) (0.031) (0.038) (0.047) (0.038)

TreatˆHigh Saturation -0.064* 0.151*** 0.070** 0.087** -0.044 0.007 0.041
(0.036) (0.027) (0.029) (0.033) (0.028) (0.039) (0.042)

Pval: T(Low)=C(High) 0.2339 0.0534 0.0932 0.3557 0.3129 0.7783 0.3160
Pval: T(Low)=T(High) 0.2382 0.0002 0.0467 0.0507 0.0949 0.4316 0.4083
Pval: C(High)=T(High) 0.0064 0.0728 0.4575 0.1239 0.5721 0.6963 0.9403
Control Mean 0.540 0.223 0.174 0.217 0.267 0.267 0.000
Observations 2257 3303 3223 3046 1167 2071 3482
Adj R-Squared 0.002 0.017 0.005 0.005 0.001 -0.001 0.000

Robust standard errors in parenthesis clustered at the tehsil level. * p ă 0.10, ** p ă 0.05, *** p ă 0.01. Table
reports ITT and spillover treatment effects regressions for whether a respondent carried out farming tasks on
days without rain according to satellite measures of realized weather. Panel A reports ITT effects as a binary
variable and spillover effects as a continuous measure set to the saturation level of each tehsil. Panel B reports
saturated regression with the reference category of control units in low saturation tehsils. Panel B also reports
t-tests of equality for each saturation by treatment pair. Sample sizes differ because responses are conditional
on having reported a date for each task.
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Table 7: ITT and Spillover Effects on Farming Behavior: Avoiding Heat

Panel A: ITT and Spillover Effects as Continuous Measure

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Heat

Index

Treat 0.009 0.024** 0.016 0.020** 0.029 0.045*** 0.036**
(0.020) (0.012) (0.010) (0.009) (0.024) (0.015) (0.013)

Tehsil Share Treated 0.220 0.125 0.106 0.072 0.171* 0.165 0.125
(0.289) (0.090) (0.082) (0.082) (0.094) (0.114) (0.135)

Control Mean 0.437 0.865 0.880 0.918 0.838 0.771 0.000
Observations 2293 3303 3225 3046 1170 2081 3482
Adj R-Squared 0.007 0.010 0.007 0.006 0.014 0.011 0.006

Panel B: Spillover Effects as Saturated Regression

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Heat

Index

TreatˆLow Saturation -0.007 0.039** 0.015 0.041*** 0.037 0.047** 0.040**
(0.023) (0.016) (0.014) (0.013) (0.034) (0.017) (0.018)

ControlˆHigh Saturation 0.059 0.078* 0.053 0.028 0.075 0.056 0.054
(0.166) (0.042) (0.040) (0.038) (0.051) (0.070) (0.090)

TreatˆHigh Saturation 0.132 0.078* 0.068* 0.028 0.100** 0.098 0.091
(0.175) (0.040) (0.036) (0.038) (0.049) (0.064) (0.085)

Pval: T(Low)=C(High) 0.6992 0.3494 0.3737 0.7036 0.5053 0.8978 0.8694
Pval: T(Low)=T(High) 0.4387 0.3179 0.1607 0.6990 0.2125 0.4264 0.5378
Pval: C(High)=T(High) 0.0752 0.9985 0.1746 0.9898 0.2290 0.1189 0.2876
Control Mean 0.427 0.841 0.865 0.908 0.813 0.757 0.000
Observations 2293 3303 3225 3046 1170 2081 3482
Adj R-Squared 0.006 0.010 0.007 0.003 0.010 0.006 0.004

Robust standard errors in parenthesis clustered at the tehsil level. * p ă 0.10, ** p ă 0.05, *** p ă 0.01.
Table reports ITT and spillover treatment effects regressions for whether a respondent carried out farming
tasks on days without extreme heat above 37C according to satellite measures of realized weather. Panel A
reports ITT effects as a binary variable and spillover effects as a continuous measure set to the saturation
level of each tehsil. Panel B reports saturated regression with the reference category of control units in low
saturation tehsils. Panel B also reports t-tests of equality for each saturation by treatment pair. Sample sizes
differ because responses are conditional on having reported a date for each task.
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Table 8: Treatment Effects on Farming Productivity

Panel A: ITT and Spillover Effects as Continuous Measure

(1) (2) (3) (4) (5) (6)
Yields Profits Revenue Input Costs Output Price Harvest Month

Treat=1 0.603 1705.830 4279.998 2227.718 21.413 0.038
(0.592) (4926.933) (5168.249) (1871.689) (117.490) (0.061)

Tehsil Share Treated -0.284 -15120.842 -7830.191 9887.454 -124.340 -0.021
(2.540) (16146.060) (19157.336) (5893.545) (607.263) (0.156)

Control Mean 11.780 25005.653 94968.054 69699.634 7703.776 9.829
Observations 1403 1386 1386 1408 1386 1323
Adj R-Squared 0.000 0.001 -0.000 0.005 -0.000 -0.002

Panel B: Spillover Effects as a Saturated Regression

(1) (2) (3) (4) (5) (6)
Yields Profits Revenue Input Costs Output Price Harvest Month

Treat in Low 0.815* 921.211 5843.102 4967.618 12.674 0.251**
(0.451) (5255.108) (5814.270) (3219.009) (265.888) (0.119)

Control in High 0.317 -5932.430 -1496.390 5724.317 -298.533 0.118
(1.456) (8272.195) (9523.803) (3804.726) (334.257) (0.093)

Treat in High 0.796 -4455.690 2313.280 7626.130** -190.940 0.085
(1.420) (7399.278) (8798.241) (3721.279) (344.409) (0.089)

Pval: T(Low)=C(High) 0.7265 0.3069 0.4852 0.8630 0.2915 0.1287
Pval: T(Low)=T(High) 0.9891 0.3898 0.7161 0.5449 0.5116 0.0695
Pval: C(High)=T(High) 0.4666 0.7832 0.4904 0.3473 0.3843 0.5689
Control Mean 11.504 29564.188 95816.595 64999.259 7922.917 9.741
Observations 1403 1386 1386 1408 1386 1323
Adj R-Squared -0.001 -0.001 -0.001 0.002 0.001 0.001

Robust standard errors in parenthesis clustered at the tehsil level. * p ă 0.10, ** p ă 0.05, *** p ă 0.01. Table
reports ITT and spillover treatment effects regressions for productivity outcomes. Panel A reports ITT effects
as a binary variable and spillover effects as a continuous measure set to the saturation level of each tehsil. Panel
B reports saturated regression with the reference category of control units in low saturation tehsils. Panel B
also reports t-tests of equality for each saturation by treatment pair.
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Table 9: Take-up and Forecast Accuracy

Weather Message
Take-up

(1) Satellite Rainfall Accuracy 0.288**
(0.119)

(2) Farmer-Reported Rainfall Accuracy 0.155*
(0.087)

(3) Satellite Absolute Rainfall Deviation 0.025*
(0.013)

(4) Rainfall False Alarms -0.001
(0.003)

(5) Rainfall RMSE 0.004
(0.005)

(6) Max Temp RMSE 0.041**
(0.017)

(7) Min Temp RMSE 0.013
(0.015)

Take-up Mean 0.217
Observations 4964

Robust standard errors in parenthesis clustered at the tehsil level. * p ă

0.10, ** p ă 0.05, *** p ă 0.01. Table reports separate regressions for
the relationship between measures of accuracy (rows 1-7) and average take-
up rates of weather forecast messages. The unit of analysis is tehsil by
day. There are 35 unique tehsils and each received between 140-145 weather
messages throughout the season. (1) refers to the share of days where rainfall
forecasts aligned with realized rainfall according to satellite measures. (2)
is the share of days when whether forecasts aligned with farmer-reported
rainfall during the survey. (3) is the average absolute deviation of forecasts
from realized weather, measured in millimeters. (4) is the number of days
with false alarms in precipitation, defined as days where forecasts predicted
no rain and a heavy rain fell, or when forecasts predicted heavy rain and no
rain fell. (5), (6), and (7) are the root mean-squared error for rainfall, max
temp, and min temp from a tehsil-level regression of the realized value on
the forecast value.
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Table 11: ITT and Spillover Effects on Farming Behavior: Avoiding Forecasted Rain

Panel A: ITT and Spillover Effects as Continuous Measure

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Rain

Index

Treat -0.037 0.051** 0.025 0.035** -0.003 -0.004 -0.004
(0.089) (0.020) (0.017) (0.014) (0.027) (0.016) (0.014)

Tehsil Share Treated 0.064 0.223*** 0.108** 0.150*** 0.079 0.094* 0.052
(0.196) (0.069) (0.046) (0.054) (0.066) (0.053) (0.034)

Control Mean 0.628 0.275 0.176 0.225 0.187 0.167 0.000
Observations 137 3213 3082 2932 968 1567 3482
Adj R-Squared -0.013 0.017 0.005 0.009 0.000 0.002 0.000

Panel B: Spillover Effects as Saturated Regression

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Rain

Index

TreatˆLow Saturation 0.016 0.053** 0.027 0.008 -0.033 -0.012 -0.005
(0.105) (0.025) (0.016) (0.020) (0.031) (0.018) (0.016)

ControlˆHigh Saturation 0.144 0.087** 0.046* 0.054* -0.025 0.020 0.055
(0.100) (0.034) (0.024) (0.031) (0.039) (0.032) (0.039)

TreatˆHigh Saturation -0.106 0.140*** 0.070*** 0.116*** 0.021 0.033 0.051**
(0.116) (0.029) (0.024) (0.030) (0.028) (0.024) (0.023)

Pval: T(Low)=C(High) 0.3191 0.3759 0.5262 0.1030 0.8399 0.3177 0.1270
Pval: T(Low)=T(High) 0.3865 0.0060 0.0916 0.0003 0.0503 0.1301 0.0252
Pval: C(High)=T(High) 0.0488 0.0676 0.4089 0.0005 0.2675 0.7172 0.9300
Control Mean 0.606 0.247 0.163 0.206 0.196 0.162 0.000
Observations 137 3213 3082 2932 968 1567 3482
Adj R-Squared -0.010 0.012 0.004 0.011 -0.000 -0.000 0.002

Robust standard errors in parenthesis clustered at the tehsil level. * p ă 0.10, ** p ă 0.05, *** p ă 0.01. Table
reports ITT and spillover treatment effects regressions for whether a respondent carried out farming tasks on
days without rain according to forecasts provided to farmers. Panel A reports ITT effects as a binary variable
and spillover effects as a continuous measure set to the saturation level of each tehsil. Panel B reports saturated
regression with the reference category of control units in low saturation tehsils. Panel B also reports t-tests of
equality for each saturation by treatment pair. Sample sizes differ because responses are conditional on having
reported a date for each task.
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Table 12: ITT and Spillover Effects on Farming Behavior: Avoiding Forecasted Heat

Panel A: ITT and Spillover Effects as Continuous Measure

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Heat

Index

Treat -0.005 -0.005 0.012 0.018 0.041 0.059** 0.010
(0.004) (0.018) (0.014) (0.014) (0.033) (0.022) (0.019)

Tehsil Share Treated 0.005 0.081 0.135** 0.004 0.244*** 0.130 0.059
(0.012) (0.082) (0.065) (0.061) (0.084) (0.111) (0.060)

Control Mean 0.013 0.725 0.741 0.800 0.658 0.564 0.000
Observations 2293 3303 3225 3046 1170 2081 3482
Adj R-Squared -0.000 0.001 0.005 -0.000 0.016 0.006 0.001

Panel B: Spillover Effects as Saturated Regression

(1) (2) (3) (4) (5) (6) (7)
Planting Irrigate Fertilize Pesticide Fungicide Herbicide Avoid Heat

Index

TreatˆLow Saturation -0.007 0.009 0.011 0.057*** 0.038 0.065*** 0.010
(0.005) (0.021) (0.018) (0.016) (0.045) (0.024) (0.022)

ControlˆHigh Saturation -0.006 0.062* 0.042 0.027 0.112** 0.032 0.041
(0.006) (0.031) (0.029) (0.028) (0.049) (0.058) (0.043)

TreatˆHigh Saturation -0.000 0.034 0.062* -0.000 0.164*** 0.084 0.053
(0.010) (0.037) (0.031) (0.034) (0.040) (0.053) (0.048)

Pval: T(Low)=C(High) 0.8801 0.1332 0.3403 0.1948 0.2149 0.5879 0.4946
Pval: T(Low)=T(High) 0.5241 0.5112 0.1064 0.0692 0.0108 0.7228 0.3844
Pval: Cont(High)=T(High) 0.4986 0.2515 0.3637 0.1903 0.1529 0.1747 0.6531
Control Mean 0.014 0.705 0.729 0.790 0.621 0.556 0.000
Observations 2293 3303 3225 3046 1170 2081 3482
Adj R-Squared -0.000 0.002 0.002 0.003 0.017 0.003 0.001

Robust standard errors in parenthesis clustered at the tehsil level. * p ă 0.10, ** p ă 0.05, *** p ă 0.01. Table
reports ITT and spillover treatment effects regressions for whether a respondent carried out farming tasks on
days without extreme heat above 37C according to forecasts sent to mobile phones. Panel A reports ITT effects
as a binary variable and spillover effects as a continuous measure set to the saturation level of each tehsil. Panel
B reports saturated regression with the reference category of control units in low saturation tehsils. Panel B
also reports t-tests of equality for each saturation by treatment pair. Sample sizes differ because responses are
conditional on having reported a date for each task.
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